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ABSTRACT 
Neuromorphic Silicon neurons and synapses are very large scale integration (VLSI) circuits that emulate or 

mimic the electrophysiological behavior of their biological counterparts. These analog  circuits can be used for 

the qualitative analysis of the functioning of neural circuits; and also for making intelligent systems that can 

perform the tasks that can be easily performed by biolological organisms but are very difficult to be performed 

by any traditionally engineered systems. Here we describe the analog very large-scale integration (aVLSI) 

realisation of integrate-and-fire neuron models and also discuss about plastic and non-plastic silicon synapses 

briefly. 
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I. INTRODUCTION 
Biological information processing systems 

are compact, energy efficient and excel at sensory 

perception, classification, association and control – 

areas in which modern digital computers falter. In 

order to study the nervous system a reasonable 

starting point is to model its basic units, neurons and 

synapses, thus developing biologically-inspired 

hardware systems. 

It was first observed by Carver Mead that 

the CMOS circuits operating in the sub-threshold 

region have current–voltage characteristics similar to 

that of ion-channels present in neurons and also 

consume less power; hence can used as analogues of 

neuron. This observation of CMOS transistor physics 

led to the development of neuromorphic silicon 

neurons. These neurons permit neural spiking 

features to be emulated directly on analog VLSI 

chips without performing any digital software 

simulation.[1] They are much more energy efficient 

than simulations performed by   general purpose 

computers, thereby making them suitable for real-

time large-scale neural emulations.  

These typically analog circuits exploit the 

inherent physics of transistors to produce an efficient 

computation of a particular task. To the extent that 

the physics of the transistors matches well the 

computation to be performed, the analog VLSI 

circuits use less power and silicon area than would an 

equivalent digital system. This is an important 

advantage because any serious attempt to replicate 

the computational power of brains must use resources  

 

 

as effectively as possible. The brain performs about 

10
15

 operations per second.  

Using the best digital technology that can be 

envisaged, this performance would dissipate over 10 

MW, by comparison with the brain's consumption of 

only a few Watts. Neuromorphic analog VLSI 

circuits are also no match for neuronal circuits, but 

they can be a factor of 10
4
 more power efficient than 

their digital counterparts. Another advantage is 

scaling capability of VLSI circuits which enables 

these circuits to operate efficiently without 

considering size of the network. But these silicon 

neurons only provide qualitative analysis of the 

performance and are not suitable for detailed 

quantitative approximations which can be done easily 

by digital simulation. 

Real neurons have a complex morphology 

and even more complex biophysics, whose full 

emulation is beyond the reach of present electronic 

technology. The first artificial neuron model was 

proposed in the 1943 by McCulloch and Pitts. 

Hardware implementations of this model date almost 

back to the same period. Hardware implementations 

of spiking neurons are relatively new. But this sort of 

implementation of neuron model like Hodgkin-

Huxley is not possible as it requires large amount of 

chip area and is also not affordable in terms of the 

required computational resources. Therefore, other 

simplified model, such as integrate and fire (IF) or 

leaky integrate and fire (LIF), which is a bold 

simplification of real neurons, has proved to have 

significant explanatory power in understanding the 

behavior of neuronal networks both in theory and 
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simulation. So far, it is this simplified model that has 

received the most attention in neuromorphic circles. 

 

II. VLSI SUBTHRESHOLD MOS 

TECHNOLOGY 
In sub-threshold region MOS transistors 

have their gate-to source voltage below the transistor 

threshold voltage Vth. Under these conditions, very 

low value (typically of the order of nanoamperes) of 

currents flow through the source and drain terminals 

of the transistor. The exponential increase in the 

transistor current with gate voltage (Fig. 1) can be 

used to make analog circuits with exponential and 

logarithmic properties that are useful for emulating 

neural properties. [2, 3] 

 

 
Fig 1: Current Ids as a function of gate-to-source 

voltage Vgs 

 

III. INTEGRATE-AND-FIRE (I&F) 

NEURON MODELS IN SILICON 
The integrate-and-fire neuron model (also 

known as threshold fire model) is one of the most 

widely used models. It captures the notion of the 

membrane being charged by currents flowing into it 

and, upon the membrane potential exceeding a 

threshold, generating an action potential and 

discharging. These neurons are a particular case of 

simplified models that derived from the pioneering 

work of the French physiologist Louis Lapicque 

(1907).  

 
Fig 2: The integrate-and-fire model of Lapicque. 

 

(a) The equivalent circuit (b) The voltage trajectory 

of the model. 

 

He put forward a model of the neuron membrane 

potential (Fig. 2) in terms of an electric circuit 

consisting of a resistor and capacitor connected in 

parallel, that represented the leakage and capacitance 

of the nerve cell membrane.  

Fig. 2(a) shows the equivalent circuit with 

membrane capacitance C and membrane resistance R. 

V is the membrane potential, Vrest is the resting 

membrane potential, and I is injected current. 

Fig.2(b) shows the voltage trajectory of the model.[4] 

When potential V reaches a threshold value, then an 

action potential is generated and V is reset to a sub-

threshold value. In this model the membrane 

capacitor is charged until it reaches a certain 

threshold, at which time it discharges, producing an 

action potential (spike) and the potential is reset. 

Thus the traditional form of an integrate-and-fire 

model has sub-threshold integration domain (where 

the neuron integrates the inputs I(t) ) and a threshold 

voltage for the generation of action potential. 

The biological neuron membrane is assumed 

to be leaky due to the presence of ion channels, and 

as a consequence, the membrane potential has a 

tendency to decay back towards its resting value. 

When the membrane potential reaches a (fixed) 

threshold, an output spike is generated–the integrate-

and-fire mechanism. After the membrane potential 

crosses threshold it is reset to its resting value and is 

inactivated for a brief time corresponding to the 

refractory period of the neuron. The basic model is 

therefore also called as leaky-integrate-and-fire (LIF) 

neuron model. 

I&F neurons integrate pre-synaptic input 

currents and generate a voltage pulse analogous to an 

action potential when the integrated voltage reaches a 

spiking threshold. A number of VLSI networks of 

integrate–and–fire (I&F) neurons have been 

developed. Some of these implementations are 

discussed in the following sub-sections.  

 

3.1   Axon-Hillock Circuit 

The first simple VLSI version of integrate-

and-fire neuron was probably the Axon-hillock 

circuit, that was proposed by Carver Mead and his 

colleagues in the late 1980s. In this circuit, a 

capacitor that represents the neuron’s membrane 

capacitance (Cmem) integrates current input to the 

neuron. On the capacitor potential exceeding the 

spiking threshold, a pulse Vout is generated and the 

membrane potential Vmem is reset. This circuit 

captures the basic principle of operation of biological 

neurons, but is unable to match with the complete 

dynamics observed in real neurons. Fig.3 shows a 

schematic diagram of Axon-Hillock circuit. 
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Fig 3: Schematic diagram of Axon-Hillock Integrate-

and-Fire Circuit 

 

The two inverters connected in series form 

the non-inverting amplifier. Iin is the synaptic current 

and Vmem is the neuron membrane potential. The 

resetting mechanism is implemented with the two 

transistors M1 and M2.the first one acts as a switch 

that activates when Vout goes high, while M2 acts as 

the current controller and imposes the maximum 

value of current Ir (according to the bias Vb) and 

hence the duration of the spike pulse input currents.  

 

 
 

 
Fig 4: (a) Output voltage; (b) membrane voltage trace 

over time 

 

The working of the circuit is as follows: 

input current Iin is integrated on the membrane input 

capacitance Cmem, and leading to the linear increase in 

the voltage Vmem until the amplifier switching 

threshold is attained. At this point Vout quickly 

changes from 0 to VDD switching on the reset 

transistor M1 and activating a positive feedback 

through the capacitor divider implemented by the 

feedback capacitor Cfb and Cmem. The membrane 

capacitor is discharged, if the reset current Ir set by 

Vb is larger than the input current, the discharging 

continues till the amplifier’s switching threshold is 

retained. At this point Vout swings back to 0 and the 

cycle repeats.  The transition in the voltage levels of 

Vout with respect Vmem is shown in Fig. 4(a) and the 

trace for membrane voltage Vmem over time is shown 

in Fig. 4(b).           

The Axon-Hillock circuit is very compact 

and allows for implementations of dense arrays of 

silicon neurons. It has a major drawback: it dissipates 

non-negligible amounts of power. This is is due to 

the fact that the input to the inverter (the voltage on 

the capacitor) changes typically with time constants 

of the order of milliseconds, and the inverter spends a 

large amount of time in the region in which both 

transistors conduct a short-circuit current. A further 

drawback is that the Axon–Hillock circuit has a 

spiking threshold that depends only on CMOS 

process parameters (the switching threshold of the 

inverter), and does not model additional neural 

characteristics, such as refractory period mechanisms. 

[5] 

 

3.2 Voltage-Amplifier Integrate-and-Fire Neuron 

In order to have better control over the 

spiking threshold, a very simple neuron model was 

developed by van Schaik in 2001 [6]. The schematic 

diagram of this neuron model is shown in Fig. 5(a). 

This neuron circuit comprises circuits for both setting 

explicit spiking thresholds and implementing an 

explicit refractory period. This circuit uses an 

amplifier at the input, for comparing the capacitor 

voltage with a desired spiking threshold voltage. 

When the input exceeds the threshold, the amplifier 

runs the inverter, making its switching very fast.  

Fig. 5(b) shows various stages that involve 

membrane potential Vmem in the process of  

generation of an action potential. The capacitance 

Cmem of this circuit works as the biological neuron 

membrane, while the controlling of the  membrane 

leakage current is done by the gate voltage Vlk, of an 

nMOS. 

In the absence of any input the membrane 

voltage will be drawn to its resting potential (ground, 

in this case), by this leakage current. Excitatory 

inputs (e.g., modeled by Iin) add charge to the 

membrane capacitance, whereas charge is removed 

from the membrane capacitance by the inhibitory 

inputs (not shown). On applying an excitatory current 

that is larger than the leakage current, there will be an 

increase in the membrane potential Vmem from its 

resting potential. Comparision of this membrane 

potential Vmem with the controllable threshold voltage 
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Vthr is done with the help of a basic transconductance 

amplifier. If Vmem exceeds Vthr, an action potential is 

generated  which is similar to the process occurring 

in the biological neuron, where an increased level of  

sodium conductance leads to the rising edge 

(depolarizing phase) of the spike, and a delayed  

increased level  of the potassium conductance gives 

the falling edge (repolarising phase) of the spike. 

 
 

 
Fig 5: Voltage-amplifier I & F neuron                         

(a) Schematic Diagram; (b) Membrane voltage trace 

over time 

 

In the circuit (Fig. 5a), this is modeled as 

follows: As Vmem rises above Vthr, the output voltage 

of the comparator will rise to the positive power 

supply. Thereby decreasing the  output V1 of the 

following inverter, and hence the sodium current INa 

pulls up the membrane potential. Simultaneously, 

second inverter allows the capacitance CK to be 

charged at a speed which can be controlled by the 

current IKup. As soon as the voltage V2 on capacitance 

CK is high enough to cause conduction of the  nMOS 

transistor M2, the potassium current IK will be able to 

discharge the membrane capacitance.  

Two different potassium channel currents 

govern the opening and closing of the potassium 

channels: The current IKup that charges the 

capacitance CK controls the spike width, as the delay 

between the opening of the sodium ion channels and 

the opening of the potassium ion channels is 

inversely proportional to the current IKup. If Vmem now 

drops below Vthr, the output of the first inverter V1 

will become high, cutting off the current INa. The 

second inverter then allows the capacitance CK to be 

discharged by the current IKdn. If IKdn is small, the 

voltage on CK decreases slowly, and, as long as this 

voltage remains high enough to permit the current IK 

to discharge the membrane, it will not be possible to 

stimulate the neuron for Iex values smaller than IK. 

Therefore IKdn controls the refractory period of the 

neuron. Finally Ib1 and Ib2 are two bias currents 

needed to limit the power consumption of the circuit; 

they do not influence the spiking behaviour of the 

neuron.  

 

IV. SILICON SYNAPSES 
To implement networks of integrate-and-fire 

neurons we can connect the circuits, described in 

section III, with each other with silicon synapses. 

These synapses can of two types depending on their 

efficacy:  non-plastic (fixed) or plastic. Synapses can 

also be classified as excitatory or inhibitory. In the 

first case, given the silicon neuron, they source 

current into the neuron’s membrane capacitor. In the 

second case they sink current from the neuron’s 

membrane capacitor. Using excitatory and inhibitory 

synaptic circuits, interfaced to silicon neurons, it is 

possible to design neural networks of arbitrary 

complexity. The size of the silicon neural network is 

only limited by the chip’s surface. Using a low-cost 

technology and small chip sizes, it is already possible 

to fabricate networks with thousands of neurons (and 

synapses). 

 

4.1 Non-plastic Synapses  

The non-plastic synapse (also called fixed 

synapse) is implemented with a circuit that injects a 

fix amount of charge in the postsynaptic membrane 

capacitance upon presentation of a presynaptic spike. 

On silicon a synapse with a fixed efficacy is a simple 

device composed of two MOSFETs, one acting as a 

digital switch, the other as a current regulator. It is a 

simple excitatory postsynaptic current or inhibitory 

postsynaptic current block with only one possible 

value for the output current.  

The inhibitory non-plastic synapses (Fig. 6a) 

are made of n-type MOSFETs whose task is to suck 

current from the neuron capacitors upon the arrival of 

a presynaptic spike (Vspk). This has an inhibitory 

effect on the postsynaptic neuron because it induces a 

decrease in the voltage Vmem moving it away from the 

spike emission threshold. The inhibitory current is 

controlled by the bias voltage VJinh.  
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(a)                                          (b) 

Fig 6: Schematic Diagram of Non-Plastic Synapse            

(a) Inhibitory Synapse; (b) Excitatory Synapse 

 

The excitatory non-plastic synapses (Fig. 

6b) are made of p-type MOSFETs. They work in an 

analogous way: when they receive active-low spikes 

from the presynaptic neuron, they inject current thus 

provoking upward jumps for the membrane potential 

Vmem. The excitatory post synaptic current is set by 

the bias voltage VJexc. The synaptic weight of these 

synapses can be set by changing the bias voltages 

VJinh and VJexc.[7] 

 

4.2 Plastic Synapse 

The ultimate aim of neuromorphic 

engineering is to mimic the capabilities of biological 

perception and information processing with a 

compact and energy-efficient platform. It is widely 

believed that this goal necessitates from the outset 

some mechanisms of learning that enables 

neuromorphic devices to adapt (or re-configure) 

themselves while interacting with an environment. 

Emulating the example of biological neurons and 

synapses, neuromorphic devices attain ability for 

learning by incorporating Hebbian-like mechanisms 

of synaptic plasticity.  

In the Hebbian scenario, the efficacy of a 

synapse is enhanced (i.e., its impact on the post-

synaptic neuron is increased), when both the pre- and 

postsynaptic neurons are simultaneously highly 

active on a suitable time-scale, and reduced if the 

pre-synaptic neuron is active while the post-synaptic 

is not. 

A simple pulsed circuit explaining Hebb’s 

Learning Rule is shown in Fig 7. Here Vpre and Vpost 

represent the pre- and post-synaptic signals 

respectively. Whenever pre- and post-synaptic pulses 

occur together, the single MOSFET gate is pulsed 

and a small current carries charge onto the capacitor. 

[8]   

 
Fig 7: A simple pulsed circuit for Hebb’s Rule 

 

The excitatory neurons are connected by 

plastic synapses. These plastic synapses are much 

more complex than the non-plastic synapses.  Their 

dynamics is described in terms of a single internal 

variable (Vsyn), which represents the voltage across a 

capacitor. Even though Vsyn is inherently analog in 

nature, the synapse is designed in such a way that 

only the maximum and the minimum allowable 

values of Vsyn are stable on long time scales, in the 

absence of presynaptic neuronal activity. A positive 

current drives Vsyn to the upper bound (VDD) when 

voltage Vsyn is above some threshold voltage Vthr; 

otherwise, the synaptic capacitor is discharged at a 

regular speed until the voltage Vsyn meets the lower 

bound (0V). These two values are then preserved 

indefinitely and survive also in the presence of small 

fluctuations which do not bring Vsyn across the 

threshold Vthr.  

This bistability preserves the memory of one 

of the two states on long time scales and, hence, these 

two currents are referred to as the refresh currents. 

Arrival of a presynaptic spike,leads to modification 

of the internal state of the synapse in order to acquire 

information about the neuronal activity and, hence, 

about the stimulus. If the postsynaptic depolarization 

is above some threshold Vref, the internal state Vsyn is 

pushed upwards (synaptic potentiation); otherwise, it 

is pushed downwards (synaptic depression). If these 

temporary changes accumulate and bring Vsyn across 

the threshold Vthr, the synapse is then attracted 

toward a different stable state, and a transition 

occurs. The presynaptic activity acts as a trigger (no 

transition can occur in case of low presynaptic spike 

frequency) and, then, the direction of the change is 

determined by the depolarization of the postsynaptic 

neuron. [7]  

 

V. CONCLUSION 
Complementary metal oxide semiconductor 

(CMOS) very large scale integration (VLSI) 

technology is being used extensively to construct a 

wide range of neural analogs, from single synapses to 

networks of spiking neurons, and simple vision 

processing devices with the intention of emulating 

brain-like real-world behavior in hardware and 

robotic systems rather than simply simulating their 

performance on general-purpose digital computers. 

A family of simpler spiking neuron models 

that permits the implementation of large, massively 

parallel networks in VLSI is the Integrate-and-fire 

neuron model and so its VLSI implementation was 

the prime focus of this paper. Different VLSI models 

like Axon-Hillock circuit, voltage-amplifier 

integrate-and-fire neuron were discussed. In addition 

to these neuron models, silicon synapse was also 

described. 
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Neuromorphic systems’ implementations 

may take place at a number of different levels. For 

example, one may model sensory processing like that 

for vision, audition and other sensory modalities like 

olfaction (electronic nose used in brewing and 

perfumery industries) or sensorimotor systems, or 

one may model specific neural systems at many 

different levels, ranging through brain region, cortical 

column, mid-brain or brainstem nucleus, neural 

microcircuits, single neurons, structural parts of 

neurons (dendrites, axons, soma), patches of 

membrane, down to ion channels encased in the 

neural bilipid membrane. 

There remains considerable interest in 

auditory and visual neuromorphic systems as 

technologies for eventually producing synthetic 

sensing systems with the same types of capabilities as 

biological auditory and visual systems. The rapid 

responses of the neuromorphic camera in without the 

use of large-scale frame technology represent a real 

step forward. Another area of progress is likely to be 

in the integration of different types of sensors on to 

CMOS systems. Light sensors have been around for a 

long time, and polymer based sensors are in use in 

olfactory neuromorphic systems. 

Thus the silicon neuron models discussed in 

this paper and many others already developed or that 

are in the developing phase, that are the building 

blocks of the neuromorphic systems, help in testing 

various theories relating to the functioning of the 

nervous system; thus providing a better 

understanding of the biology and thus helping in the 

development of neural prostheses. In addition to this,  

robotic parts that emulate the nervous system can 

also be designed leading to more intelligent robots 

that will able to interact with their environment with 

limited human intervention. 
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